FROM WASTE TO WORTH ANAEROBIC DIGESTION

Becky Larson Assistant Professor and Extension Specialist Biological Systems Engineering

November 24, 2015

University of Wisconsin–Extension

What is Anaerobic Digestion?

- Biological process
- Breakdown of organic materials (called feedstocks)
- Absence of oxygen (anaerobic conditions)
- Produced biogas methane (CH₄) and carbon dioxide (CO₂)

Why install a digester?

- Energy independence
- Reductions in green house gases
- Flexibility in manure management
- Reduced odors & pathogens
- Reduction in other environmental impacts
- Potential for additional asset streams (?)
 - Bedding
 - Tipping fees
 - Environmental credits
- Profits?
- What can't digesters do?

Anaerobic Digestion in the U.S.

USEPA AgSTAR, 2011

Anaerobic Digestion Livestock & Swine Operations

Animals	No. of Digesters	Methane	Shutdown
	Operational or in Construction	Emissions Reductions (metric tons CO2-eq/year)	Projects
All Livestock	261	3,480,955	52
Swine	39	1,491,718	10
	Restantion Products		

- North Carolina has 10 swine digesters, others are scattered around country
- Operational from as far back as 1985
- From 1,200 to 1,200,000 million animals
- Completely mixed, covered lagoons, mixed plug flow designs
- Gas use in boilers, electricity, cogeneration, flares

USEPA AgSTAR, 2015

Currently Operational and	Potential Bi	logas Syster	ms in the United S	tates
			Water Resource	
	Livestock	Landfill	Recovery	
	Manure	Gas	Facilities	Total
Currently Operational Biogas Systems	239 ^{xi}	636 ^{xii}	1,241 ^{xiii}	2,116
Total Potential Number of Biogas Systems	8,241 ^{xiv}	1,086 ^{xv}	3,681 ^{xvi}	13,008

Figure 5 - Currently Operational and Potential Biogas Systems in the United States Creating Energy

Estim	ated Energy Po	tential from Bio	gas Sources in the Uni	ted States ^{xvii}
	Livestock Manure	Landfill Gas	Water Resource Recovery Facilities	Total
Biogas Production Potential (billion cubic feet/year)	257 ^{xviii}	284 ^{xix}	113 ^{xx}	654
Annual Energy Production Potential (MMBTU/year)	142,000,000 _{xxi}	142,000,000 xxii	67,000,000 ^{xxiii}	351,000,000
Annual Electricity Potential (billion kWh/year)	13.1 ^{xxiv}	22.5 ^{xxv}	5.6 ^{xxvi}	41.2
Equivalent Residential Electricity Use (1000 homes/year) xxvii	1,089	1,864	539	3,492
Potential Vehicle Fuel Gallons Displaced (million GGE) ^{xxviii}	1,031	1,028	441	2,499

Biogas Opportunities Roadmap Voluntary Actions to Reduce Methane Emissions and Increase Energy Independence

U.S. Department of Agriculture, U.S. Environmental Protection Agency, U.S. Department of Energy

August 2014

Figure 6 - Energy Potential from Biogas Sources in the United States

Anaerobic Digestion Feedstocks

Biogas Yield

Kestutis Navickas. 2007. Bioplin Tehnologija in Okolje,

Anaerobic Digester Completely Mixed and Plug Flow

AD System Types

Technology (Dec 2011)

Covered storage

Advantages included odor control, low cost, integrated manure storage and minimal operational costs

Disadvantage include seasonal biogas production in cold climates and difficulties with sludge removal

Plug flow & mixed plug flow

Completely mixed

Complete mix digester Green Valley Dairy, Krakow, WI **Complete mix digester** Five Star Dairy, Elk Mound, WI

Inside a completely mixed AD

Fixed film

Fixed film digester ROPA, Regensburg, DE

Advantages include low cost of construction and ease of daily operation

Disadvantage include the limited range of feedstock TS concentration

Fixed film digester media J.J. Farber Farm, East Jewett, NY

Dry Digestion

OshKosh Dry Digester, BIOFerm

Small Scale Digestion

Community Digesters Dane County Digester, 2011

Test

Biogas

- Biogas Components
 - CH4 (50 65%)
 - CO₂ (40 50%)
 - H2S (<1%)
 - Other Trace Elements (?)
- Generator (CHP) electricity production
 - Most common (ease of use)
 - High cost
 - Requires pretreatment or specially designed equipment
- Compressed Biogas
 - High cost of clean-up
 - Requires design
 - High revenue
- Biogas Treatment
 - High cost systems
 - Multi-phase approach

Digestate

- Must be disposed
- Liquid and solid commonly used for fertilizer
- Solids potential for higher value products
- AD results in:
 - nutrient mineralization
 - odor reduction
 - pathogen reduction
 - antibiotic degradation

Nutrients & Anaerobic Digestion

Systems on Dairy Farms in New York State

Nutrients & Anaerobic Digestion

Systems on Dairy Farms in New York State

Ammonia

Nutrients & Anaerobic Digestion

Wright, et al. 2004. Preliminary Comparison of Five Anaerobic Digestion Systems on Dairy Farms in New York State

Phosphorus

N-P-K

	Concentration	N (g/kg)	$P_2O_5(g/kg)$	K ₂ O (g/kg)
	Manure	50	18	41
	Liquid	101	27	75
	Solid	15	14	8
-				
	Ratio	Ν	P_2O_5	K ₂ O
	Manure	3	1	2
	Liquid	4	1	3
	Solid	2	2	1
	and the second sec	1		

Odor

Swine Manure Hansen et al. 2006, Applied Engineering in Agriculture

- Slurry concentrations of malodorous VFA were reduced 79-97% from AD
- Odor concentration above undisturbed slurry store reduced (higher odors after mixing)
- Land application odor reductions:
 - 17% anaerobic digestion
 - 50% anaerobic digestion and solid liquid separation

Orzi et al., 2015, Science of the Total Environment

- Odors reduced 98%
- P2-P6 are pig slurries
- VFA destruction related to measured odor reductions

Pathogens in manure from a single farm by year and season

Antibiotic Degradation

- Many antibiotics to be tested
- Not many studies to date
- May increase intermediates
- Beef manure studies by Arikan (2006, 2007, 2008) found some degradation in initial component, increases in some intermediaries

Alvarez et al., 2010, Bioresource Technology

- Fate of antibiotics in pig manure in AD
- oxytetracycline (OTC) and chlortetracycline (CTC)
- Reduction in antibiotics over time, as well as methane production
- Antibiotics adsorbed to solids increasing duration for destruction

Global Warming Potential

Ammonia Emissions

Limitations to Adoption

- Lack of Awareness of Biogas Benefits.
- Unpredictable Biogas Market Conditions
- Lack of Market Maturity.
- Lack of Full Valuation
- Inconsistencies across Federal, State, and Local Governments.
- Lack of Technical and Applied Research & Development

Biogas Opportunities Roadmap

Voluntary Actions to Reduce Methane Emissions and Increase Energy Independence U.S. Department of Agriculture, U.S. Environmental Protection Agency, U.S. Department of Energy August 2014

- Capital cost
- Operating cost
- Energy use
- Energy value
- By-product Revenue

Thank You!

Becky Larson ralarson2@wisc.edu (608) 890-3171